

WBS 6.4 Liquid Argon Calorimeter System

John Parsons Level-2 Manager Columbia University

U.S. ATLAS HL-LHC Upgrade Director's Review
Brookhaven National Laboratory
Upton, New York
January 20-22, 2016

Outline

- System Overview
 - Current (Run-2) System and Motivation for Upgrade
 - ATLAS Upgrade Plans
- Proposed U.S. HL-LHC Upgrade Scope
 - Work Breakdown Structure and Contributing Institutes
 - U.S. Deliverables
- Ongoing R&D
 - Plans to Construction Project
- Construction Project Management
 - Construction Project Budget and Schedule
 - Risk, Contingency, and Quality Assurance
- Closing Remarks

Replace LAr readout electronics, both front-end (FE) and back-end (BE)

- Replace LAr readout electronics, both front-end (FE) and back-end (BE)
- Possibly modify the forward region, with options including
 - Possible new sFCAL to replace FCAL (or possible MiniFCAL in front of FCAL)
 - Possible high-granularity timing detector (HGTD) in front of endcap cryostat

LAr HL-LHC Upgrade Motivation

Electronics

- Current readout satisfies original ATLAS spec's (eg. L1 rate/latency < 100 kHz/to 2.5 μs)
- To adopt HL-LHC TDAQ architecture (eg. L0/L1 trigger rate up to 1 MHz/400 kHz, with latency up to 10 μs/60 μs), MUST replace LAr readout electronics (both FE and BE)
- To maintain ability to trigger on low pT objects (eg. ~20 GeV e/γ) in HL-LHC environment, need to provide more info at earlier trigger levels (eg. use EM shower shape vars at L1)
 - Develop new FE electronics, implementing digitization and readout of FULL granularity (~180k channels, with ~16 bit dynamic range) at 40 MHz
 - Develop new BE electronics to process this data, provide inputs to TDAQ system

Forward Region

- HL-LHC physics (eg. VBF Higgs prod., VBS,) places premium on det. perf. in forward region
- At HL-LHC rates, existing FCAL will suffer degraded performance
 - A number of options being considered, including new sFCAL with thinner LAr gaps, or new MiniFCAL in front of FCAL
 - Also considering a forward "4D" high-granularity timing detector (HGTD), to help with pileup rejection, aid in triggering, improve EM response, ...

US LAr WBS Structure and Institutions

6.4 Liquid Argon WBS (NSF)							
Deliverable/Item	Institution						
FE Electronics							
6.4.1.1 FE Electronics	Columbia						
6.4.2.1 FE Electronics	UT Austin						
Optics							
6.4.3.2 Optics	SMU						
BE Electronics							
6.4.4.3 BE Electronics	SUNY SB						
6.4.5.3 BE Electronics	U Arizona						

- 8 university groups and 2 labs
- US deliverables organized into 7 BOEs
 - 5 in baseline (3 NSF, 2 DOE)
 - 2 in DOE "Scope Opportunity"

6.4 Liquid Argon WBS (DOE)							
Deliverable/Item	Institution						
System Integration							
6.4.6.4 System Integration	BNL						
PA/Shaper							
6.4.6.5 PA/Shaper	BNL						
6.4.7.5 PA/Shaper	U Penn						
sFCAL							
6.4.5.6 sFCAL	U Arizona						
HGTD							
6.4.7.7 HGTD	U Penn						
6.4.8.7 HGTD	UCSC						
6.4.9.7 HGTD	SLAC						
6.4.10.7 HGTD	U Iowa						

Scope Opportunity

HL-LHC LAr Readout Architecture

HL-LHC LAr FE Electronics

- As in original construction, US groups proposing to take lead responsibility for LAr FE readout electronics, with deliverables including:
 - Radiation-tolerant (65 nm) ASICs
 - Preamp/shaper (BNL, U Penn)
 - 40 MHz ADC (Columbia)
 - 10 Gbps Serializer (SMU)
 - VCSEL array driver (SMU)
 - Optical transmitter (OTx) (SMU)
 - Frontend Board (FEB2) (Columbia)

- WBS items are 6.4.x.1 (FE Electronics), 6.4.x.2 (Optics), 6.4.x.5 (PA/shaper)
- Apart from complementary French effort on Preamp/shaper, no non-US groups are currently working on these tasks
- Full system requires installation of 1524 FEB2 boards (128 channels each)
 - As in original construction, planning to produce total of 1627

HL-LHC LAr BE Electronics

 LPPR of HL-LHC is natural "evolution" of ATCA-based Phase I LDPS, developed by US groups working with European groups (primarily LAPP Annecy)

- As in Phase I, US proposes (WBS 6.4.x.3) to take lead responsibility for LPPR motherboard (MB), both hardware and firmware (140 MBs needed in total)
 - SUNY SB emphasis on hardware
 - U Arizona emphasis on associated firmware

System Integration

- WBS 6.4.x.4 covers "System Integration" task at BNL, which is part of DOE scope
- Work involved includes:
 - Frontend Crate System Test, performed to validate the FE system integration and overall performance before PRRs of the various FE

crate boards (including FEB2)

- Validation and final analog tests of 50% of the FEB2 boards
- Integration and combined system test of FE and BE electronics
- The equivalent tests were performed at BNL during the original ATLAS construction

sFCAL (WBS 6.4.x.6)

A novel feature of ATLAS is LAr "rod-and-tube"-geometry forward calorimeter (FCAL),

developed by U Arizona group

- New sFCAL with thinner gaps (down to 100 μm, instead of 270 500 μm) would avoid space charge and other problems in HL-LHC environment
 - sFCAL would also allow finer granularity, and therefore improved performance
 - As for current FCAL, U Arizona to produce sFCAL1 modules, as well as cold electronics
- sFCAL performance needs to be evaluated, and balanced against risks involved in opening cryostats (in pit) to replace FCAL
 - Other options include MiniFCAL in front of FCAL, or doing nothing
 - ATLAS decision about FCAL options planned to be made in June 2016
 - For now, sFCAL (WBS 6.4.x.6) is included in DOE "Scope Opportunity" (~ \$5.4M)

High-Granularity Timing Detector HGTD (WBS 6.4.x.7)

- Possible new "4D" detector in front of EC cryostats
 - $\Delta z = 60 \text{ mm detector}$; $|\eta|$ range of 2.4 4.1 (or even up to 5.0)
- Assuming multiple (eg. 4) layers of Si-based detectors (eg. LGADs developed by UCSC with some CMS collaborators)
 - Want time resolution of 30-50 ps and granularity of 1-100 mm²
 - Could include absorber plates if also used as preshower
 - Synergies with option of Si/Cu miniFCAL (and also CMS HL-LHC)
- US groups and personnel are providing significant leadership of HGTD, with roles including:
 - Francesco Lanni, BNL (HGTD co-Convenor)
 - Abe Seiden, UCSC (co-Convenor of Detector System group)
 - Ariel Schwartzman, SLAC (co-Convenor of Software&Perf.group)
- Simulation program underway to investigate physics impact,
- In parallel, proceeding with detector development, ...
- ATLAS decision whether to build HGTD planned for May 2017
 - Possible US HGTD contribution (WBS 6.4.x.7) included in DOE "Scope Opportunity" (~ \$5.3M)

Research & Development

- R&D so far has focused on long-lead items, in particular custom ASIC developments, including:
 - PA/shaper (BNL with U Penn) 65 nm CMOS, as well as SiGe as backup
 - ADC (Columbia, in collab. with Columbia/UT Dallas EE depts) 65 nm CMOS
 - Serializer (SMU) 65 nm CMOS
- In addition, some R&D funding has been used to support ongoing (s)FCAL studies
- Limited R&D budget constrains what can be done before start of MREFC funds (~Q2 FY20), causing some schedule risk
- More details on LAr R&D program and plans will be provided by Hong Ma in breakout session

NSF Schedule & Milestones

DOE Schedule & Milestones

Cost and Effort Estimates

- LAr HL-LHC upgrade cost and effort estimates are detailed in 7 BOEs
 - NSF baseline includes FE Electronics, Optics, BE Electronics
 - DOE baseline includes PA/shaper and System Integration
 - DOE Scope Opportunity includes sFCAL and HGTD
- Given the similarity of our HL-LHC deliverables to our previous ATLAS responsibilities, most cost and manpower estimates are based on our experience with either the original ATLAS construction project or the ongoing ATLAS Phase I upgrade project
- We assume cost sharing wherein US pays 67% fraction of M&S charges for FEB2 boards, OTx modules, and BE motherboards
 - However, we include 100% M&S costs for all US-led ASIC productions
 - These sharing arrangements are similar as for original ATLAS construction

NSF Budget and Effort

6.04 Liquid Argon NSF Total Cost (AYk\$)												
	FY20	FY21	FY22	FY23	FY24	Grand Total						
NSF												
Labor	2,407	2,582	2,541	1,862	1,580	10,972						
M&S	907	2,005	1,991	1,918	1,079	7,900						
Travel	57	37	49	25	26	195						
NSF Total	3,371	4,624	4,581	3,805	2,686	19,067						

DOE Budget and Effort

	6.04 Liquid Argon DOE Total Cost (AYk\$)													
	-						-							
	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Grand Total						
DOE														
Labor	683	839	907	805	829	435	449	4,948						
M&S	160	160	210	140	140	50	50	910						
Travel	25	35	35	35	35	15	15	195						
DOE Total	868	1,034	1,152	980	1,004	500	514	6,053						

WBS 6.04 LAr L2 DOE Resource Breakdown

NSF Cost and Effort (by Deliverable)

6.04 Liquid Argon Total NSF Cost by Deliverable (AYk\$)											
Deliverable/Item	FY20	FY21	FY22	FY23	FY24	Total					
FE Electronics	1,451	2,595	2,758	2,232	1,378	10,414					
6.4.1.1 FE Electronics	1,333	2,474	2,634	2,117	1,260	9,818					
6.4.2.1 FE Electronics	119	121	123	115	118	596					
Optics											
6.4.3.2 Optics	991	1,115	1,116	173	0	3,396					
BE Electronics	929	914	708	1,399	1,308	5,258					
6.4.4.3 BE Electronics	765	686	504	1,222	1,182	4,358					
6.4.5.3 BE Electronics	164	228	204	177	126	900					
NSF Grand Total	3,371	4,624	4,582	3,805	2,686	19,067					

6.04 Liquid Argon NSF Total FTEs by Deliverable												
Deliverable/Item	FY20	FY21	FY22	FY23	FY24	Grand Total						
FE Electronics	6.60	6.95	7.85	7.00	6.50	34.90						
6.4.1.1 FE Electronics	5.60	5.95	6.85	6.00	5.50	29.90						
6.4.2.1 FE Electronics	1.00	1.00	1.00	1.00	1.00	5.00						
Optics												
6.4.3.2 Optics	5.25	7.00	6.95	1.00	-	20.20						
BE Electronics	4.39	4.47	4.17	3.89	3.14	20.06						
6.4.4.3 BE Electronics	3.10	3.10	2.80	2.60	2.30	13.90						
6.4.5.3 BE Electronics	1.29	1.37	1.37	1.29	0.84	6.16						
NSF Grand Total	16.24	18.42	18.97	11.89	9.64	75.16						

DOE Cost and Effort (by Deliverable)

6.04 Liquid Argon Total DOE Cost by Deliverable (AYk\$)										
Deliverable/Item	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Total		
System Integration	248	448	464	475	488	500	514	3,137		
6.4.6.4 System Integration	248	448	464	475	488	500	514	3,137		
PA/Shaper	621	586	688	505	516	0	0	2,916		
6.4.6.5 PA/Shaper	439	452	515	417	426	0	0	2,249		
6.4.7.5 PA/Shaper	182	135	173	88	90	0	0	667		
DOE Grand Total	868	1,034	1,152	980	1,004	500	514	6,053		

6.04 Liquid Argon Total DOE FTEs by Deliverable (k\$)										
Deliverable/Item	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Grand Total		
System Integration	1.00	2.00	2.00	2.00	2.00	2.00	2.00	13.00		
6.4.6.4 System Integration	1.00	2.00	2.00	2.00	2.00	2.00	2.00	13.00		
PA/Shaper	2.73	2.43	2.80	2.00	2.00	-	-	11.96		
6.4.6.5 PA/Shaper	1.50	1.50	1.50	1.50	1.50	-	-	7.50		
6.4.7.5 PA/Shaper	1.23	0.93	1.30	0.50	0.50	-	-	4.46		
DOE Grand Total	3.73	4.43	4.80	4.00	4.00	2.00	2.00	24.96		

Risks

HL-LHC Upgrad	de Project Risk Regi: 6	stry for L2 Systems		c Eval VI/H)	uatio	n			
WBS	Title	Risk Owner		Cost	Schedule	Scope Contingency %	Contingency AYK\$	Average Risk Score	Identified Risks (See BoEs)
6.4	Liquid Argon	Parsons, John				35%	8,792	4.5	
6.4.x.1	FE Electronics	Parsons, John	M	M	L	35%	3,645		*Problems that can only be found at bench test and system integration test may impact project schedule. *Delays in ASIC schedule can lead to assembly schedule delays. *Achieving the required performance might require additioal engineering effort. *Given preliminary nature of FEB2 design, final cost could be higher.
6.4.x.2	Optics	Parsons, John	M	L	L	35%	1,188	3.5	* Delay in 1pGBT project may impact ASIC design. *Additional engineering could be effort required for ASIC. * Finding vendor qualified to assemble OTx
6.4.x.3	BE Electronics	Parsons, John	M	M	L	35%	1,840	5.0	*Problems that can only be found at bench teat and system integration test may impact project schedule. *Complexity of board requires complex manufacture and assembly process, needs more iterations. *A vendor part may require an intervention at the level of design of the overall system and some modifications of the assemblies.
6.4.x.4	System Integration	n Parsons, John	M	M	L	35%	1,098	5.0	*Problems that can only be found at integration stage may impact project schedule and require modifications to one or more components. *A vendor part may require intervention at the level of design of the overall system and some modification of the assemblies.
6.4.x.5	PA/Shaper	Parsons, John	M	L	M	35%	1,021	4.5	*Problems that can only be found at bench test and system integration test may impact project schedule, requiring additional engineering work *Late delivery of ASICs. *Analog circuits can require multiple submissions due to unfreseen performance or manufacturing issues.

- Leading risks, and mitigation strategies, identified in BOEs
 - Can discuss in breakout sessions

Contingency

Budget Contingency

For now, 35% budget contingency assigned globally to all LAr deliverables

Scope Contingency

- NSF Scope Contingency
 - Provide less firmware effort for BE MBs (up to ~\$1M)
 - Cover M&S for < 67% of FEB2 boards/OTx modules/BE MBs (up to ~ \$1M)
- DOE Scope Contingency
 - Do not provide PA/shaper ASIC (up to ~ \$1M)

Scope Opportunity

- NSF Scope Opportunity
 - Cover M&S for > 67% of FEB2 boards/OTx modules/BE MBs (up to ~ \$2.4M)
- DOE Scope Opportunity
 - sFCAL, assuming positive ATLAS decision in June 2016 (up to ~ \$5.4M)
 - HGTD, assuming positive ATLAS decision in May 2017 (up to ~ \$5.3M)
 - Perform final analog testing at BNL of > 50% of FEB2 boards (up to ~ \$0.9M)

Closing Remarks

- US HL-LHC deliverables for LAr (as described in a total of 7 BOEs) follow directly from our expertise and experience from:
 - US ATLAS responsibilities of the original ATLAS construction project (FE electronics, Optics, Preamp, System Integration, FCAL)
 - US ATLAS responsibilities of the Phase I Upgrade project (BE electronics)
 - US R&D on very fast Si detectors (HGTD)
- This expertise also provides us with confidence in the budget/effort estimates, which (without contingency) total:
 - \$19.1M and 75.2 FTE (NSF, FY20-24)
 - \$6.1M and 25.0 FTE (DOE, FY18-24)

(not including sFCAL and HGTD, which are currently in Scope Opportunity)

Slides for Breakout Session

sFCAL

- A novel feature of ATLAS is its LAr forward calorimeter (FCAL), using a rodand-tube geometry and integrated into the same cryostat as the other (EM and hadronic) endcap calorimeters
 - This innovative design was developed by the U Arizona group

- New sFCAL with thinner gaps (down to 100 μm , instead of 270 500 μm) would avoid space charge and other problems in HL-LHC environment
- As for original FCAL, U Arizona proposes to produce sFCAL1 modules, as well as cold electronics for all sFCAL modules

sFCAL Planning

 sFCAL would also allow finer granularity, and therefore improved performance, in forward region

- Simulations underway to evaluate impact (eg. on jet substructure in VBS)
- sFCAL performance needs to be evaluated, and balanced against risks involved in opening cryostats (in pit) to replace FCAL
 - Other options include MiniFCAL in front of FCAL, or doing nothing
 - ATLAS decision planned to be made by June 2016
 - For now, sFCAL (WBS 6.4.x.6) is included in DOE "Scope Opportunity"

High-Granularity Timing Detector (HGTD)

- Possible new "4D" detector in space of current MTBS (trigger scintillators)
 - Δz = 60 mm detector could cover |η|
 range of 2.4 4.1 (or even up to 5.0)
- Assuming multiple (eg. 4) layers of Sibased detectors (eg. LGADs developed by UCSC with some CMS collaborators)
 - Aiming for time resolution of 30-50 ps and spatial granularity of 1-100 mm²
- Could include absorber if also used as preshower in front of EMEC calorimeter
- Possible synergies with option of Si/Cu miniFCAL (and also CMS HL-LHC upgrade)

HGTD Planning

- US groups and personnel are providing significant leadership of HGTD
- US leadership roles in HGTD management structure include:
 - Francesco Lanni of BNL (HGTD co-Convenor)
 - Abe Seiden of UCSC (co-Convenor of HGTD Detector System group)
 - Ariel Schwartzman of SLAC (co-Convenor of HGTD Software & Performance group)

- Simulation program underway to investigate physics impact, including on pileup rejection, triggering, possible use as preshower, ...
- In parallel, proceeding with detector development, testbeam plans, ...
- ATLAS decision whether to build HGTD planned by May 2017
 - Possible US HGTD contribution (WBS 6.4.x.7) included in DOE "Scope Opportunity"

LAr WBS Structure and Institutions

6.4 Liquid Argon WBS (NSF)						
Deliverable/Item	Institution					
FE Electronics						
6.4.1.1 FE Electronics	Columbia					
6.4.2.1 FE Electronics	UT Austin					
Optics						
6.4.3.2 Optics	SMU					
BE Electronics						
6.4.4.3 BE Electronics	SUNY SB					
6.4.5.3 BE Electronics	U Arizona					

- 8 university groups and 2 labs
- US deliverables organized into 7 BOEs
 - 5 in baseline (3 NSF, 2 DOE)
 - 2 in DOE "Scope Opportunity"

	6.4 Liquid Argon WBS (DOE)
	Deliverable/Item	Institution
	System Integration	
	6.4.6.4 System Integration	BNL
	PA/Shaper	
	6.4.6.5 PA/Shaper	BNL
	6.4.7.5 PA/Shaper	U Penn
<u> </u>	sFCAL	
ıni	6.4.5.6 sFCAL	U Arizona
ortı		
bbo	HGTD	
0	6.4.7.7 HGTD	U Penn
Scope Opportunity	6.4.8.7 HGTD	UCSC
Sco	6.4.9.7 HGTD	SLAC
	6.4.10.7 HGTD	U Iowa

NSF Cost and Effort (by Deliverable)

6.04 Liquid Argon Total NSF Cost by Deliverable (AYk\$)											
Deliverable/Item	FY20	FY21	FY22	FY23	FY24	Total					
FE Electronics	1,451	2,595	2,758	2,232	1,378	10,414					
6.4.1.1 FE Electronics	1,333	2,474	2,634	2,117	1,260	9,818					
6.4.2.1 FE Electronics	119	121	123	115	118	596					
Optics											
6.4.3.2 Optics	991	1,115	1,116	173	0	3,396					
BE Electronics	929	914	708	1,399	1,308	5,258					
6.4.4.3 BE Electronics	765	686	504	1,222	1,182	4,358					
6.4.5.3 BE Electronics	164	228	204	177	126	900					
NSF Grand Total	3,371	4,624	4,582	3,805	2,686	19,067					

6.04 Liquid Argon NSF Total FTEs by Deliverable										
Deliverable/Item	FY20	FY21	FY22	FY23	FY24	Grand Total				
FE Electronics	6.60	6.95	7.85	7.00	6.50	34.90				
6.4.1.1 FE Electronics	5.60	5.95	6.85	6.00	5.50	29.90				
6.4.2.1 FE Electronics	1.00	1.00	1.00	1.00	1.00	5.00				
Optics 6.4.3.2 Optics	5.25	7.00	6.95	1.00	-	20.20				
BE Electronics	4.39	4.47	4.17	3.89	3.14	20.06				
6.4.4.3 BE Electronics	3.10	3.10	2.80	2.60	2.30	13.90				
6.4.5.3 BE Electronics	1.29	1.37	1.37	1.29	0.84	6.16				
NSF Grand Total	16.24	18.42	18.97	11.89	9.64	75.16				

DOE Cost and Effort (by Deliverable)

6.04 Liquid Argon Total DOE Cost by Deliverable (AYk\$)									
Deliverable/Item	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Total	
System Integration	248	448	464	475	488	500	514	3,137	
6.4.6.4 System Integration	248	448	464	475	488	500	514	3,137	
PA/Shaper	621	586	688	505	516	0	0	2,916	
6.4.6.5 PA/Shaper	439	452	515	417	426	0	0	2,249	
6.4.7.5 PA/Shaper	182	135	173	88	90	0	0	667	
DOE Grand Total	868	1,034	1,152	980	1,004	500	514	6,053	

6.04 Liquid Argon Total DOE FTEs by Deliverable (k\$)									
Deliverable/Item	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Grand Total	
System Integration	1.00	2.00	2.00	2.00	2.00	2.00	2.00	13.00	
6.4.6.4 System Integration	1.00	2.00	2.00	2.00	2.00	2.00	2.00	13.00	
PA/Shaper	2.73	2.43	2.80	2.00	2.00	-	-	11.96	
6.4.6.5 PA/Shaper	1.50	1.50	1.50	1.50	1.50	-	-	7.50	
6.4.7.5 PA/Shaper	1.23	0.93	1.30	0.50	0.50	-	-	4.46	
DOE Grand Total	3.73	4.43	4.80	4.00	4.00	2.00	2.00	24.96	

6.0	6.04 Liquid Argon NSF Total Cost by Phase (AYk\$)											
Dallarankla /wassa /Dhassa	EV20	EVOA	EV22	EVOO	EVO.4	Constant						
Deliverable/Item/Phase 6.4.1 LAr_Columbia	FY20 1,333	FY21 2,474	FY22 2,634	FY23 2,117	FY24 1,260	Grand Total 9,818						
6.4.1 LAr_Columbia 6.4.1.1 FE Electronics	1,333	2,474	2,634	2,117	1,260 1,260	9,818						
ADC	1,333 802	1,348	696	2,117	1,200	2,846						
Design	0	0	0	0	0	2,040						
Prototype	802	0	0	0	0	802						
Production	002	1,348	696	0	0	2,044						
FEB	530	1,126	1,939	2,11 7	1,260	6,972						
Design	338	0	0	0	0	338						
Prototype	193	631	0	0	0	824						
Production	0	494	1,939	2,117	1,260	5,810						
6.4.2 LAr_UTAustin	119	121	1,333 123	115	118	5,610 59 6						
6.4.2.1 FE Electronics	119	121	123	115	118	596						
Design	0	0	0	0	0	330						
Prototype	119	121	0	0	0	240						
Production	0	0	123	115	118	356						
6.4.3 LAr_SMU	991	1,115	1,116	173	0	3,396						
6.4.3.2 Optics	991	1,115	1,116	173	0	3,396						
Serializer	601	550	337	0	0	1,488						
Design	0	0	0	0	0	1,100						
Prototype	601	0	0	0	0	601						
Production	001	550	337	0	0	887						
VCSEL array driver	171	41	42	0	0	254						
Design	0	0	0	0	0							
Prototype	171	0	0	0	0	171						
Production	0	41	42	0	0	83						
Optical Link	219	524	736	173	0	1,653						
Design	0	0	0	0	0	_,;;;						
Prototype	219	0	0	0	0	219						
Production	0	524	736	173	0	1,434						
6.4.4 LAr_SB	765	686	504	1,222	1,182	4,358						
6.4.4.3 BE Electronics	765	686	504	1,222	, 1,182	4,358						
Design	0	0	0	0	0	· c						
Prototype	765	686	504	0	0	1,955						
Production	0	0	0	1,222	1,182	2,404						
6.4.5 LAr_Arizona	164	228	204	177	126	900						
6.4.5.3 BE Electronics	164	228	204	177	126	900						
Design	0	0	0	0	0	C						
Prototype	164	228	204	0	0	596						
Production	0	0	0	177	126	303						
NSF Grand Total	3,371	4,624	4,582	3,805	2,686							

6.04 Liquid Argon DOE Total Cost by Phase (AYk\$)									
Deliverable/Item/Phase	FY18	FY19	FY20	FY21	FY22	FY23	FY24	Grand Total	
6.4.6 LAr_BNL	687	900	979	892	914	500	514	5,386	
6.4.6.4 System Integration	248	448	464	475	488	500	514	3,137	
Design	248	448	464	0	0	0	0	1,159	
Prototype	0	0	0	475	488	0	0	963	
Production	0	0	0	0	0	500	514	1,014	
6.4.6.5 PA/Shaper	439	452	515	417	426	0	0	2,249	
Design	439	0	0	0	0	0	0	439	
Prototype	0	452	515	0	0	0	0	967	
Production	0	0	0	417	426	0	0	843	
6.4.7 LAr_Penn	182	135	173	88	90	0	0	667	
6.4.7.5 PA/Shaper	182	135	173	88	90	0	0	667	
Design	182	0	0	0	0	0	0	182	
Prototype	0	135	173	0	0	0	0	308	
Production	0	0	0	88	90	0	0	178	
DOE Grand Total	868	1,034	1,152	980	1,004	500	514	6,053	

BOE Table: FE Electronics

		4.x.1 LAr FE			_		
		Labor	Labor	M&S	Travel	TOTAL	
WBS	Description	FTE	Ayk\$	Ayk\$	Ayk\$	Ayk\$	
6.4.x.1	LAr FE Electronics	34.9	5,370	4,948	95	10,414	
	Instr. Physicists	5.6					
	Engineers	14.9					
	Techs	13.4					
	EE PhD Students	1.0					
6.4.1.1	LArFE_Columbia	29.9	4,947	4,816	55	9,818	
	Instr. Physicists	5.6					
	Engineers	12.4					
	Techs	10.9					
	EE PhD Students	1.0					
6.4.2.1	LArFE_UTAustin	5.0	423	133	40	596	
	Instr. Physicists	_					
	Engineers	2.5					
	Techs	2.5					
	EE PhD Students	_					

BOE Table: Optics

6.4.x.2 LAr Optical Links							
WBS	Description	Labor FTE	Labor Ayk\$	M&S Ayk\$	Travel Ayk\$	TOTAL Ayk\$	
6.4.3.2	LAr Optical Links	20.20	2,374	981	40	3,396	
	Engineers	11.95					
	Techs	2.50					
	Students	7.00					

BOE Table: BE Electronics

		4.x.3 LAr BE	:			
		Labor	Labor	M&S	Travel	TOTAL
WBS	Description	FTE	Ayk\$	Ayk\$	Ayk\$	Ayk\$
6.4.x.3	LAr BE Electronics	20.1	3,228	1,971	60	5,258
	Engineers	9.8				
	EE Postdocs	5.0				
	Techs	2.5				
	Students	2.8				
6.4.4.3	LArBE_StonyBrook	13.9	2,460	1,868	30	4,358
	Engineers	8.2				
	EE Postdocs	5.0				
	Techs	0.7				
	Students	_				
6.4.5.3	LArFE_Arizona	6.2	767	103	30	900
	Engineers	1.6				
	EE Postdocs	_				
	Techs	1.8				
	Students	2.8				

BOE Table: System Integration

	6.4.x.4 LAr System Integration						
WBS	Description	Labor FTE	Labor Ayk\$	M&S Ayk\$	Travel Ayk\$	TOTAL Ayk\$	
6.4.6.4	LAr System Integration	13.00	2,692	350	95	3,137	
	Engineers	7.00					
	Techs	6.00					
	Students	_					

BOE Table: PA/shaper

	6.4.x.5 PA/Shaper							
WBS	Description	Labor FTE	Labor Ayk\$	M&S Ayk\$	Travel Ayk\$	TOTAL Ayk\$		
6.4.x.5	PA/Shaper	12.0	2,256	560	100	2,916		
	Engineers	7.2						
	Techs	3.5						
	MSEE Students	1.3						
6.4.6.5	PA/Shaper_BNL	7.5	1,644	530	75	2,249		
	Engineers	5.0						
	Techs	2.5						
	MSEE Students	-						
6.4.7.5	PA/Shaper_Penn	4.5	612	30	25	667		
	Engineers	2.2						
	Techs	1.0						
	MSEE Students	1.3						

BOE Table: sFCAL

6.4.x.6 sFCAL							
		Labor	Labor	M&S	Travel	TOTAL	
WBS	Description	FTE	Ayk\$	Ayk\$	Ayk\$	Ayk\$	
6.4.5.6	sFCAL	18.90	1,631	3,645	81	5,357	
	Engineers	8.65					
	Techs	3.25					
	Students	7.20					

BOE Table: HGTD

		Labor	Labor	M&S	Travel	TOTAL
WBS	Description	FTE	Ayk\$	Ayk\$	Ayk\$	Ayk\$
6.4.x.7	HGTD	28.11	3,474	1,604	210	5,287
	Engineers	6.86				
	Techs	11.90				
	MSEE Students	1.35				
	Students	8.00				
6.4.8.7	HGTD_UCSC	10.40	715	520	60	1,295
	Engineers	0.40				
	Techs	6.00				
	Students	4.00				
6.4.7.7	HGTD_Penn	4.41	602	99	25	726
	Engineers	2.16				
	Techs	0.90				
	MSEE Students	1.35				
6.4.9.7	HGTD_SLAC	1.90	796	786	75	1,656
	Engineers	1.90				
	Techs	_				
	Students	-				
6.4.10.7	HGTD_lowa	11.40	1,361	200	50	1,610
	Engineers	2.40				
	Techs	5.00				
eter	Students	4.00 or's Review, Janua	20.22.20	DAIL		

Backup Slides

LAr Electronics Radiation Tolerance

Table 14. Radiation tolerance criteria of the LAr electronics for operation at HL-LHC for a total luminosity of 3000 fb⁻¹, including safety factors for background estimation, given in brackets. For COTS, an additional safety factor of 4 is included in case of production in unknown multiple lots. Furthermore, the ATLAS policy specifies annealing tests that allow reducing the enhanced low dose rate safety-factor to 1, which currently is set to 1.5 for ASICs and 5 for COTS.

	TID [kGy]		NIEL $[n_{eq}/cm^2]$		SEE $[h/cm^2]$	
ASIC	0.75	(2.25)	2.0×10^{13}	(2)	3.8×10^{12}	(2)
COTS (multiple lots)	9.9	(30)	8.2×10^{13}	(8)	1.5×10^{13}	(8)
COTS (single-lot)	2.5	(7.5)	2.0×10^{13}	(2)	3.8×10^{12}	(2)
LVPS (EMB and EMEC)	0.58	(30)	9.2×10^{12}	(8)	2.4×10^{12}	(8)
LVPS (HEC)	0.17	(2.25)	4.7×10^{12}	(2)	2.7×10^{11}	(2)

sFCAL Simulations

Figure 40. Event displays for the same single electron (upper plots) and the same single jet (lower plots), in the FCal1 (left) and the high-granularity sFCal1 (right).

Figure 91. Average number of topo-cluster constituents per VBF tag-jet in the forward region as a function of $|\eta|$. The round dots indicate sFCal+ITk simulations; the triangles FCal+ITk simulations, both with $\mu=200$. Jets with R=0.4 at the e.m.-scale are matched to outgoing quarks from the VBF production of a 125 GeV mass Higgs boson within $\Delta R=0.2$. The finer granularity sFCal1 leads to 2-3 times more constituents in the region $3.2<|\eta|<4.3$ which provides better resolution of the substructure inside these jets. This information can be useful to reduce the impact of pile-up, and potentially to assist in distinguishing quark jets from gluon jets.

HGTD Simulations

Figure 92. Arrival time spread for hard-scatter and pile-up particles for different bunch collision schemes (crab-kissing angle ψ), assuming that the z position of the hard-scatter vertex is known.

Figure 93. Efficiency for selecting pile-up jets as a function of the efficiency for selecting hard-scatter jets using the jet time from the highest p_T particle (black) and the time fraction f_t (blue) as discriminant, assuming a crab-kissing scheme with $\psi = 5$ mrad.

HGTD Organization Chart

Scenarios from Scoping Document

Table 25. Top-level summary of the CORE cost estimates for the Phase-II ATLAS upgrades by detector subsystems (expanded to Level-2 in the WBS).

WBS	Detector system	Reference Detector Total Cost [MCHF]		Low Scenario Differential Cost [MCHF]		
	ATLAS	271.04	-42.55	-71.16		
	1		1			
3.	LAr	45.98	-13.60	-13.60		
3.1	Read-out electronics	31.39	-	-		
3.2	sFCal	10.03	-10.03	-10.03		
3.3	HGTD	4.56	-4.56	-4.56		
3.4	LAr MiniFCal	+0.91				
3.5	Si-based MiniFCal	+3.57				

LAr Electronics CORE Costs

WBS ID	Upgrade Item	All Cost Scenarios [kCHF]
3.1	LAr Readout Electronics	31,394
3.1.1	LAr Front-end Electronics	20,427
3.1.1.1	Front-end Boards (FEB-2)	9,743
3.1.1.2	Optical fibres and fibre plant	4,306
3.1.1.3	Front-end power distribution system	3,123
3.1.1.4	HEC LVPS	622
3.1.1.5	Calibration System	2,484
3.1.1.6	Shipping and Logistics	150
3.1.2	LAr Back-end Electronics	10,967
3.1.2.1	LAr Pre-processor Boards (LPPR)	10,212
3.1.2.2	Transition modules	122
3.1.2.3	ATCA shelves	66
3.1.2.4	ATCA switches	76
3.1.2.5	Server PC	22
3.1.2.6	Controller PC	8
3.1.2.7	FELIX/TTC System	460

LAr Electronics Schedule (from SD)

Figure 26. Overview of the time-line and milestones for the main system components of the front-end and back-end systems of the LAr readout electronics upgrade.

sFCAL (MiniFCAL) CORE Costs

WBS ID	Upgrade Item	Reference [kCHF]	Middle [kCHF]	Low [kCHF]
3.2	High-granularity sFCal	10,033		
3.2.1	sFCal1	1,381		
3.2.2	sFCal2	2,567		
3.2.3	sFCal3	2,480		
3.2.4	Cold cable harnesses	995		
3.2.5	Plug	115		
3.2.6	Cooling loops	28		
3.2.7	Cryostat modification	399		
3.2.8	Structural tube, cone, bulkhead	118		
3.2.9	Feedthroughs and signal cables	778		
3.2.10	Front-end and back-end electronics	771		
3.2.11	Detector support and tooling	402		
3.4	LAr/Cu MiniFCal			907
3.4.1	Detector and Cryostat			125
3.4.2	Warm tube, Moderator, Insertion			330
3.4.3	Electronics and HVPS			285
3.4.4	Module 0			167
3.5	Si/Cu MiniFCal			3,573
3.5.1	Cu absorbers			30
3.5.2	Sensors and on-detector electronics			1,001
3.5.3	Front-end readout			713
3.5.4	Back-end readout			1750
3.5.5	Services			80

sFCAL (MiniFCAL) Schedule (from SD)

HGTD CORE Costs/Schedule

WBS ID	Upgrade Item	Reference [kCHF]
3.3	HGTD	4,558
3.3.1	Sensors and on-detector active electronics	1,921
3.3.2	Front-end readout	1,988
3.3.3	Back-end readout	450
3.3.4	Services	200

HL-LHC TDAQ Architecture

LAr HL-LHC Upgrade Motivation: FE and BE Electronics

- Current LAr readout satisfies original ATLAS specifications, limiting L1 latency to 2.5 μs, max. L1 rate to 100 kHz, ...
- To adopt HL-LHC TDAQ architecture (eg. L0/L1 trigger rate up to 1 MHz/400 kHz, with latency up to 10 μs/60 μs), MUST replace LAr readout electronics (both FE and BE)
- To maintain ability to trigger on low pT (~20 GeV) EM objects
 (e/γ) in high pileup HL-LHC environment, need to provide more
 info at earlier trigger levels (eg. use EM shower shape vars at L1)
 - Develop new FE electronics, implementing digitization and readout of FULL granularity (~180k channels, with ~16 bit dynamic range) at 40 MHz
 - Develop corresponding new BE electronics to receive and process this data, and provide inputs to TDAQ system

LAr HL-LHC Upgrade Motivation: Forward Region

- HL-LHC physics program (in particular, VBF Higgs production, VBS, ...) places a premium on detector performance in the forward region
- At HL-LHC rates, existing FCAL will suffer degraded performance, due to space charge effects, time-dependent HV due to drops across HV resistors, ...
 - Also, there are some concerns (being investigated) that there could be LAr boiling
- A number of options being considered:
 - 1. Replace FCAL with new sFCAL with thinner LAr gaps (to avoid space charge problems), which could have finer granularity for enhanced performance
 - 2. Place "miniFCAL" in front of existing FCAL, to absorb some of the energy
 - 3. Do "nothing" and live with degraded FCAL performance
- Also investigating placing a "4D" high-granularity timing detector (HGTD) in front of endcap cryostats, to help with pileup rejection, aid in triggering, improve EM response in forward region, ...

LAr Calorimeter System

- LAr HL-LHC upgrade plans are to:
 - Replace LAr readout electronics, both front-end (FE) and back-end (BE)
 - Possibly modify the forward region, with options including
 - Possible new sFCAL to replace FCAL (or possible MiniFCAL in front of FCAL)
 - Possible high-granularity timing detector (HGTD)